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Continuing previous investigations this paper deals with negative results con
cerning a pointwise comparison of trigonometric convolution processes with their
discrete analogues. Though the uniform errors of those processes are equivalent
(under suitable conditions), application of an appropriate extension of a familiar
lemma of A. P. Calderon in connection with a general quantitative resonance
principle establishes that corresponding pointwise interpretations may fail almost
everywhere. © 1992 Academic Press, Inc.

1. INTRODUCTION

Let Cz" be the Banach space of functions J, 2n-periodic and con
tinuous on the real axis R, endowed with the usual sup-norm 11/11:=
sup{I/(u)1 : uER}. Consider two sequences {Sn}, {Tn} of bounded linear
operators of Cz" into itself, the norm of, e.g., Tn being denoted by II Tnll :=
sup{IITn/11 :/ECz", II/II:;;; I}. If the operators are polynomial and
coincide on lln (set of trigonometric polynomials of degree :;;;n) in the
sense that for each n EN (set of natural numbers)

(1.1 )

then it immediately follows (cf. [1]) that for each/ECz", nEN

If, moreover, the processes {Sn}, {Tn} are equibounded, i.e.,

(n ~ 00), (1.2)
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then there exist constants °< Cl' C2 < 00, independent of fEe2", n E N,
such that

(1.3)

Hence the assumptions (1.1,2) imply that the uniform errors of the
processes are indeed equivalent, apart from constants.

Turning to pointwise approximation, however, the situation may change
completely. The present paper illustrates this (see also [5, 7]) in connec
tion with approximation by trigonometric convolution operators and their
discrete analogues. While the uniform comparison (1.3) holds true in this
case, Section 3 shows that a corresponding pointwise interpretation fails
almost everywhere, even for a Lipschitz continuous function. It may be
mentioned that in [8] we were only able to establish this result on a
denumerable set of points. Indeed, the present method of proof essentially
depends on an appropriate extension of a lemma of A. P. Calderon as well
as on a general quantitative resonance principle, already established in [7].
These tools are prepared in Section 2.

2. TOOLS

Let us begin with the following extension of a lemma of Calderon
(cr. [15, p.165]), a basic tool towards divergence almost everywhere
(cf. [13,14]). For aER, MeR we use the standard notations aM:=
{ax: xEM}, M + a:= {x+ a: xEM} as well as IlfI11:= H" If(u)1 du for
f E L~", the space of br-periodic, Lebesgue integrable functions.

THEOREM 2.1. Let Hk> D k e R be (Lebesgue) measurable subsets such
that H k is 2n-periodic and D k belongs to [0,2n] with Lebesgue measure
A(Dk) of°for each kEN. Suppose that

(n --+ (0). (2.1 )

Then there exist points YkED k such that limsuPk~oo(Hk-Yk):=
n~=l Uk~n (Hk - Yk) is a set offull measure.

Proof The argument is essentially that employed for the proof of the
standard assertion (see [15, p. 166]) which is concerned with the case
Dk = [0, 2n]. Thus, with ~A := R\A, let Xk(t) be the characteristic func
tion of ~Hk so that Xk(t + Yk) is the one of ~(Hk - Yk) for Yk E D k. By
Fubini's theorem and the assumption (2.1) it follows that for p 1 EN
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Analogously one has limpi +1~ 00 F(Pi + 1, Pi+ d = 0 for every fixed Pi E N.
Using this, the remaining part of the proof then indeed proceeds parallel to
that of the standard assertion (see [15, p. 166J). I

Let us mention that the formulation of the lemma of Calderon is usually
given in terms of a condition of type

a.e.,

which is sufficient for

But the latter condition is indeed equivalent to (2.1).
On the basis of Theorem 2.1 the divergence assertions mentioned then

result from an application of the following quantitative resonance principle
(see [7J).

For a Banach space X (with norm 11·11) let x* be the set of non
negative, sublinear, and bounded functionals T on X, i.e., T maps X into
[0, (0) such that for all f, g E X and scalars IX

T(f + g) ~ Tf + Tg, T(IXf) = IIXI Tf,

II Til x* := sup{ Tf: Ilfll ~ I} < 00.

Let w be an abstract modulus of continuity, thus a function, continuous on
[0, 00), with

640/70/1-3

0= w(O) < w(s) ~ w(s + t) ~ w(s) + w(t) (s, t>O),
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lim w(t) = 00.
, ..... 0+ t

(2.2)

Let a(t) be a function, (strictly) positive on (0,00), and {qJn} be a
sequence, (strictly) decreasing with limn ..... 00 qJn = 0. In these terms one has

THEOREM 2.2. Let A, B be arbitrary index sets. Suppose that for families
of functionals {U,:tE(O,oo)}, {Vn,,,,:nEN, IXEA}, {Wn,,,,:nEN,
IX E A } c X* with

[[ Vn, ",I[ x' + [I Wn, "'![ x' ~ Cj (nEN, IXEA) (2.3)

there exist testelements {gn, P : n EN, P E B} c X such that

I[ gn, p[1 ~ C2

U, gn, p~ C3 min{I, a(t)/qJn}

(nEN, PEB),

(tE(O,oo),pEB,nEN),

(IX E A, PE B, n -+ 00 ).

(2.4 )

(2.5)

(2.6)

Moreover, for each subsequence {nj } eN let there exist a sequence {Mk} of
subsets of A (more exactly M{nj},k)' sequences of points {Pd c B and of
numbers {cd c R with lim k ..... 00 Ck = 0, and a constant C4 >°such that for
IXEMk

Vnk, '" gnk, Pk): C4 - Ck>

Wnk, '" gnk, Pk ~ Ck'

(2.7)

(2.8)

Then for each modulus w satisfying (2.2) there exist a subsequence {nj } and
a counterexample f", E X with

UJro = lD(w(a(t»)

Vn, '" fro # o(w( qJn»

Vn, '" fro # lD( Wn, '" fro)

(t -+ 0+ ),

(n -+ 00),

(n -+ 00),

(2.9)

(2.10)

(2.11 )

simultaneously for each IX E M{nj} := lim SUpk ..... 00 M{nj}, k'

This quantitative version of a resonance principle looks rather technical,
but in view of the many parameters occurring it is indeed very flexible for
applications. For a proof see [7] and the literature cited there. Here let us
continue with some remarks explaining roughly how this result contributes
to the present problem: First of all, Theorem 2.2 indeed delivers the
negative result (2.11) on the comparison of the processes V and W, and it
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is given in quantitative terms inasmuch as (2.9) assures a certain smooth·
ness of the counterexample fO) , whereas (2.10) may be interpreted as a
precision of its nonsmoothness. If A is equal to a point set of R, the families
of functionals V and W usually represent the pointwise remainders of cer
tain approximation processes. Therefore the index sets A (and B) should be
arbitrary, not only denumerable. The proof of Theorem 2.2 proceeds via a
suitable gliding hump technique which delivers the candidate

00

fO) = '\' w( qJn) gn {3"i-J j J' J
j~l

(2.12)

Indeed, in view of the properties of wand {qJn} one may first successively
select the strictly increasing subsequence {nj } which additionally may be
assumed to be of the form

(2.13 )

for some Sk E N. For this subsequence there then exist, by assumption, sets
MkcA and points f3kEB such that (2.7,2.8) hold true. Thus it is essential
that the assumptions around (2.7,2.8) be satisfied for each subsequence.
Our candidate for a counterexample being given via the infinite series
(2.12), it is almost obvious that additional properties of the testelements
gn, (3 may transfer to fO)· For example, if all the gn, (3 are real-valued func
tions, then fO) will be real-valued, too. The result then is that the assertions
hold true on a limes superior of certain abstract sets. In other words, the
general theory finally delivers a condensation of singularities on a limes
superior of index sets. It is in this connection that Theorem 2.1 assures this
limes superior to be a set of full measure.

3. DIVERGENCE ALMOST EVERYWHERE OF A POINTWISE COMPARISON

With regard to typical representatives for sequences of operators satis
fying (1.1), the present paper deals with trigonometric convolution
operators and their discrete analogues.

For an even, polynomial kernel of degree n E N, given by
n

Xn(X):= L Pk,n eikx
k= -n

(3.1 )

with P-k, n= Pk, n' Po, n= 1, and for f E C27t let the trigonometric convolu
tion operator be defined by

1 f27t
Fnf(x):=2n 0 f(u)Xn(x-u)du (3.2)
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and its discrete analogue by

(3.3 )

where uj , n = 2nij(2n + 1), 0 ~ i ~ 2n. Note that (3.3) may be interpreted
either as a quadrature formula for the integral (3.2) (cf. [3,4]) or
as a linear mean of the interpolation polynomial, associated with the
knots {uj,n} (cf. [2,6,9-11,12, p.413ff]). For hk(x):=eikx, kEZ (set of
integers), one has

and additionally

(Ikl ~ n), (3.4)

(Ikl = 2n + 1). (3.5)

Moreover, if one of the processes {Fn} or {In} is equibounded, then so is
the other one (cf. [9,10]). Hence (Ll, 2) are fulfilled if, e.g.,

(n --+ CX)) (3.6)

holds true, which yields the equivalence (1.3) of the uniform errors of the
processes.

If one is interested in a pointwise interpretation of (1.3), it is quite
obvious that in the present setting one also has

C1 lEn f(x) - f(x)1 ~ lin f(x) - f(x)1 ~ C2 lEn f(x) - f(x)1

for smooth functions, e.g., for polynomials (cf. (3.4)). The situation
changes, however, if the functions are less smooth. Indeed, Theorem 3.1
delivers the existence of a counterexample fo E C21t such that

(3.7)

for almost every x E R. Furthermore, Theorem 3.1 even ensures a certain
smoothness of the counterexample fo which now will be measured in terms
of the rth modulus of continuity (r E N)

wAf, t):= sup {II kto (_ly-k G) f(x + kh) II :Ihl ~ t}.

For any abstract modulus of continuity wand r E N Lipschitz classes are
then defined by
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THEOREM 3.1. Let {Xn : n EN} be a sequence of even, polynomial kernels
(3.1), satisfying (3.6) and

1 - Pj, n= lPj(n -r) (j EN, n -HX)) (3.8)

for some r EN. Then for each modulus of continuity w satisfying (2.2) there
exists a (real-valued) counterexample fro E Lipr w such that (n ~ 00 )

IJnfro(x)- fro(x)1 #o(w(n- r)), (3.9)

IJnfro(x)- fro(x)1 #lP(lFnfro(x)- fw(x)l) (3.10)

simultaneously for almost every x E R.

Proof To apply Theorem 2.2 set X = C2", A = B = R, UJ = wAf,
<r(t)=tr, ((In=n- r, Ek = n/2(k + 1), gn,y(x)=cos((2n+1)(x+y)),

Vn,xf= IJnf(x)- f(x)l, Wn,xf= IFnf(x)- f(x)l.

Since IIXnlll ~ C, one has II Wn,xlix. ~ C* < 00 and IlVn,xll X* ~ C* (cf.
[9-11]), thus (2.3). Moreover, Ilgn,yll = 1 and

Utgn,y~min{2r Ilgn,yll, tr Ilg~)yll} ~ C min{1, <r(t)/«Jn}.

In view of (3.4,3.8) one also obtains (2.6). Now let {nJ eN be an
arbitrary subsequence satisfying (2.13). Let

(3.11 )

and set Mk=Hk - Yk for some YkEDk> still to be chosen appropriately. If
xEHk - Yk> then by (3.4,3.5)

Vnk,X gnk, Yk = Icos( (2nk + 1) Yk) - cos( (2nk + 1)(x + Yk))1

~ Icos((2nk + 1) ydl- Icos( (2nk + 1)(x + Yd)1
1 n 1

~ j2-2 k+1=:C4 -
E

k>

n 1
Wnk,X gnk, Yk = Icos((2nk + l)(x + Yk)1 ~ 2 k + 1 = Ek'

Hence conditions (2.7,2.8) hold as well, and Theorem 2.2 delivers
a counterexample fro E Lipr w satisfying (3.9, 3.10) simultaneously on
H = lim SUPk _ 00 (Hk - Yk)' It remains to show that there exist appropriate
points Yk E Dk such that H is a set of full measure.
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To apply Theorem 2.1, first note that 2(Dd = n. Let us consider the
function

2(Dk " (Hk-t)) 1
fk(t) := 1- 2(Dd = -;;, 2(Dk " rc(Hk - t)). (3.12)

In view of (3.11) one has fk(t)=fk(t+n/(2nk+ 1)), in particular fkEL~".
Moreover, the estimate

n [1 3Jfor tE-- - -
2nk+1 4'4

(3.13)

holds. Indeed, since (cf. (3.11)) rc(Hk-t) equals

1 (n n n n)
j~Z 2nk+1 nj -'2-(2nk+l)t+ 2(k+l)' nj +'2-(2nk+l)t- 2(k+l) ,

one has for

n [1 1 1 J
tE 2nk + 1 4'4+2(k+l)

(analogously for the interval n/(2nk+ 1)[3/4-1/2(k+ 1), 3/4J)

Dk"rc(Hk-t)c

[0, 2nJ" U _1_ [nj -!!.., nj+!!..- (2nk+ l)t- n J
JEZ 2nk+1 4 2 2(k+l)

whereas for

there holds true

Dk"rc(Hk-t)c

[0,2n)"j~Z {[nj-~, nj+~-(2nk+l)t-2(k:1)J

u [n(j+ 1)-~- (2nk+ l)t+ 2(k: 1)' nj+~J},

which then already implies (3.13). Let us introduce the abbreviations
dk := 2(2nk + 1) and

Ak:=I~Z ~: {1+[~,~J}, Bk:=I~Z ~: {1+[~,~J}.
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By (2.13) one then has dk=bk-ldk-l with bk- 1 =4Sk_ 1+ 1~4, and in
view of (3.13)and the definition of fk

1

fk(t)~{ak:=l-k+l' tEAk (3.14)

1, tEBk'

It remains to show that IInZ~l fklll =.0(1), thus (2.1).
To this end let kEN be arbitrary, fixed. Then the interval [n/4, 9n/4] is

divided into dk subintervals of length n/dk, contained in A k (in view of
(2.13) consider l=nk/2EN) where fk(t)~ab and dk subintervals,
contained in Bk where fk(t) ~ 1. Now consider the partition of [n/4, 9n/4]
by intervals of Ak- 1 and Bk- 1. Since dk=bk-ldk-l with bk- 1~4, one
has at most dk/2 + 2dk_ 1 intervals of length n/dk where fk-l fk takes
values less than 1, ak-l> ab and ak_1ab respectively. Note that the addi
tional terms 2dk-1 result from those subintervals of length n/dk which
belong to different subintervals of length n/dk -I' Thus there are at most

dk dk- 1 d3
2k- 1+2k- 3 + ." +2+dz+2dl

intervals of length rc/dk , where nJ~ 1 jj takes values less than 1, a j , az,
a1aZ, ... , a 1 , .. ab respectively. Therefore it follows that
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Let us mention that in [8] the existence of a counterexample II E C2n

was shown such that also (cf. (3.7))

(3.15)

on a denumerable set of points x E R, in fact on a dense set of second
category. It is then tempting to conjecture the existence of a counter
example II E C2n such that (3.15) holds true even on a set of full measure.
So far, however, we have not been able to specify the parameters in such
a way that this result would follow as an application of Theorems 2.1
and 2.2.
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